On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Approximation to Hyperbolic Conservation Laws

We study high order convergence of vanishing viscosity approximation to scalar hyperbolic conservation laws in one space dimension. We prove that, under suitable assumptions, in the region where the solution is smooth, the viscous solution admits an expansion in powers of the viscosity parameter ε. This allows an extrapolation procedure that yields high order approximation to the non-viscous li...

متن کامل

Adaptive Spectral Viscosity for Hyperbolic Conservation Laws

Spectral approximations to nonlinear hyperbolic conservation laws require dissipative regularization for stability. The dissipative mechanism must on the other hand be small enough, in order to retain the spectral accuracy in regions where the solution is smooth. We introduce a new form of viscous regularization which is activated only in the local neighborhood of shock discontinuities. The bas...

متن کامل

Entropy viscosity method for nonlinear conservation laws

A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entr...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A Finite Element, Multiresolution Viscosity Method for Hyperbolic Conservation Laws

It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is also well known that naively adding artificial diffusion to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral viscosity method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2007

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-007-0147-7